Approximate Seismic Analysis Procedure for Multibay RC Framed Structures

Syed Zubair Ahmed ${ }^{1}$, Asst Prof. G S Deshmukh ${ }^{2}$
${ }^{1}$ PG Research Student, Dept of Civil Engineering, MGM College of Engineering Nanded Maharashtra, India
${ }^{2}$ Asst Professor, Dept of Civil Engineering, MGM College of Engineering Nanded Maharashtra, India

Abstract

In the current earth quake resisting code provisions for building structures, there remains a need for simple model that provide accurate estimate of response. The concept of lateral stiffness is reviewed, where a single value can be used to represent the stiffness of the storey in a rectangular frame with fixed base which is subjected to distribution of lateral load at stories. In this paper an approximate analysis is performed to examine the behaviour of various model of same reinforced concrete moment resisting frame, which differ in stories and column dimensions. The parameter discussed includes Fundamental natural time period, stiffness, lateral displacement and storey drift. The Analysis is carried out by both processes, Equivalent static analysis from which lateral displacement is found due to lateral load and Dynamic analysis (Response spectrum) from which natural time period, frequencies and mode shapes is found. This whole process is carried out by two adapted procedure that is by full structure analysis and lumped mass model by following the codal provisions of IS 1893 (2002). The two adapted results are then compared and analyzed using Spreadsheet and ETAB software.

Keywords: Equivalent Static analysis, Response Spectrum, Lateral stiffness, Natural Time Period, Lateral displacement, Story Drift, approximate seismic analysis.

I. INTRODUCTION

Detailed Seismic analysis of various structures is carried out to obtain seismic induced stresses, which is used for design of various members of the structures. Analysis is carried out by two processes namely Equivalent static method and Response spectrum method. According to many design codes Equivalent static method is simpler, conservative, cost effective and applicable to those structures which simple dynamic properties. The analysis is made to obtain seismic force and their distribution to different levels along height of the building and to various lateral load resisting elements, depending on the height of the building, severity of the seismic zone in which the building is located and on the classification of the building as regular or irregular. The fundamental natural period of vibration of a building is given by empirical formulae which depend on the height of the building and base dimensions of the structure ${ }^{[5]}$.

In this paper a multibay bare frame (5×10) bay of 5 storeys, 8 storeys and 11 storeys is being adapted. These are assumed as same reinforced moment resisting and being analyzed using linear Equivalent static method and linear Dynamic analysis (Response spectrum method), for evaluating the seismic capacity of the structures with different column dimension for the structures. The analysis and design is being carried manually by Spreadsheet and as well as commercially available ETAB software and results are being compared. All the structures whose performances were evaluated in this study are designed with the provision from IS 1893-2002. ${ }^{[1]}$

Depending on the same inputs of member sizes, an approximate analysis is made for calculation of seismic load by making a lumped mass model where the total storey stiffness and total mass on storey are calculated. For easier modulation a (1×1) bay frame is been analyzed manually in spreadsheet as shown in method 2 and figure 3.2.

Another method in paper adopted for calculation of storey displacement, drift and time period on lumped mass model in ETAB software is a (1×1) bay frame of $2 \times 2 \mathrm{~m}$ spacing is modeled and without applying seismic properties on it, lateral load of Equivalent static method from table 8 is applied laterally on each storey in X direction for displacement and drift as shown in figure 5 .

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

II. STRUCTURAL DISCRIPTION

In this paper a plane RC frame building of 5 storey, 8 storey, 11 storey is been analyzed by Equivalent static method and Response spectrum method as per IS 1893(part 1) $2002^{[1]}$.

One of the plane frames in transverse direction has been considered for purpose of illustration by assuming that the building is symmetric in elevation and plan as shown in figure. $1.1 \& 1.2$

Fig. 1.1: PLAN

Fig. 1.2: ELEVATION

A. Preliminary data 1 for analysis (full structure in spread sheet):

III. METHODOLOGY

A. Method 1 (Full Structure Analysis In Spread Sheet):-

Modern computational equipment and current structural analysis techniques have greatly facilitated the development of model of building frames, yet remains a need of simple mathematical model that can be used to approximate the response of building frame to lateral loads.

In this paper a Bare Frame models of (5×10) bay (figure1) of reinforced concrete moment resisting, of different stories 5, 8,11 are assumed for analysis. In which the dimension of columns has been changed. For simplification only 5 storey

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com
diagrams and calculations are explained. So for the analysis only one frame in transverse direction has been considered and the design for the frame is done according to IS $13920^{[2]} \&$ IS $4562000^{[4]} \&$ SP 16 .The seismic analysis procedure is carried out by using code provision IS $18932002^{[1]}$. The analysis is made by using equivalent static method and response spectrum method, from which we get the lateral loads, fundamental natural time periods of different storey level. All the analysis and designs are done and compared in Spreadsheet.
Secondly the same model is then analyzed in computer software named ETAB ${ }^{[7]}$ in which all the parameters \& data is entered as same as in preliminary data 1.

1. Equivalent Static analysis:

Earth Quake loading $(\mathrm{EQ})=$

$A h=(Z / 2) \times(S a / g) \times$	(I / R)	
$\mathrm{Z}=$	0.24	$($ Zone IV $)$
$\mathrm{Sa} / \mathrm{g}=$	2.5	
$\mathrm{R}=$	5	$($ SMRF $)$
$\mathrm{I}=$	1	
$\mathrm{Ah}=$	0.06	

(Table 7 - IS 1893)
$\mathrm{T}=0.09 \times \mathrm{h}^{\prime} / \sqrt{ } \mathrm{d}^{\prime}=0.3143 \mathrm{sec}$
for $\mathrm{T}=0.32 \mathrm{sec} \mathrm{Sa} / \mathrm{g}=2.5$
(IS 1893 (part 1) 2002

Total Base Shear $=\mathrm{Ah} \times \mathrm{W}=2980.23 \mathrm{kN}$
Base Shear in each Frame $=$ TBS/11 $=270.93 \mathrm{kN}$
Table 1: Design lateral loads of full structure by static method $(\mathbf{3 0 0} \times 550) \mathbf{m m}$

Storey	\mathbf{W}	\mathbf{h}	$\mathbf{W} \times \mathbf{h}^{\mathbf{2}}$	$\boldsymbol{W} \times \boldsymbol{h}^{2} / \Sigma \boldsymbol{W}$ $\times \boldsymbol{h}^{2}$	$\mathbf{Q (k N)}$ on frame	$\mathbf{Q}(\mathbf{k N})$ on Storey of all frames
$\mathbf{5}$	8139.79	16.75	2283721	0.395	107.059	1177.65
$\mathbf{4}$	10382.68	13.40	1864314	0.323	87.398	961.38
$\mathbf{3}$	10382.68	10.05	1048677	0.182	49.161	540.78
$\mathbf{2}$	10382.68	6.70	466078.6	0.081	21.85	240.35
$\mathbf{1}$	10382.68	3.35	116519.6	0.020	5.46	60.09
			$\mathbf{5 7 7 9 3 1 0}$		$\mathbf{2 7 0 . 9 3}$	$\mathbf{2 9 8 0 . 2 3}$

2. Response Spectrum Analysis:

Seismic Zone 4

Z	$=$	0.24
I	$=$	1
R	$=$	5

Moment resisting Frame
(IS 13920-1993)
Step 1: Calculation of Lumped Masses to various Floor levels

At Roof:

Imposed load on roof assumed to be zero
(Table 8 IS 1893 (part 1) 2002)
Mass of infill + Mass of Column + Mass of Beam + Mass of Slab + Imposed L
$M_{5}=\left\{0.15 \times(37+37+23+23) \times \frac{3.35}{2} \times 20\right\}+\{0.3 \times 0.55 \times(3.35 \div 2) \times 66 \times 25\}+\{0.3 \times 0.5 \times[(23 \times 11)+(37 \times 6)] \times 25\}+\{0.12 \times 23 \times 37 \times 25\}+0$
M_{5} or $\mathrm{M}_{0}=5215.143 \mathrm{kN} ; \quad \mathrm{M}_{5 \text { (tons) }}=\mathrm{M}_{0} \times 9.81=531.62$ tons (mass)
t Floors: 50% of Imposed load, if imposed load is greater than $3 \mathrm{kN} / \mathrm{m}^{2}$
M_{1} to $\mathrm{M}_{4}=7763.41 \mathrm{kN} ; \mathrm{M}_{\text {(tons) }}=\mathrm{M} \times 9.81=791.38$ tons (mass)
Seismic Weight of building:
$\mathrm{W}=\quad\left(\mathrm{M}_{1} \times 4\right)+\mathrm{M}_{5}=36268.79 \mathrm{kN}$
Step 2 : Fundamental natural period
$\mathrm{Ta}=0.075 \times \mathrm{h}^{0.75}=0.621 \quad$ sec \quad where $\mathrm{h}=16.75 \mathrm{~m}$

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

Step 3 : Determination of Design Base Shear:
Design Seismic Base Shear $=\quad V B=A h \times W$
$A h=(Z / 2) \times(S a / g) \times(I / R)$
$\mathrm{Ta}=0.621 \quad$ sec $\quad \mathrm{Sa} / \mathrm{g}=1.61$
$\mathrm{A}_{\mathrm{h}}=0.0386$
$\mathrm{V}_{\mathrm{B}}=1401.75 \mathrm{kN}$
Step 4: Vertical Distribution of Base Shear:
$\mathrm{Q}=\quad V B=W \times h^{2} / \Sigma W \times h^{2}$
$\mathrm{Q}_{1}=29.96 \mathrm{kN}$
$\mathrm{Q}_{2}=119.82 \mathrm{kN}$
$\mathrm{Q}_{3}=269.60 \mathrm{kN}$
$\mathrm{Q}_{4}=479.29 \mathrm{kN}$
$\mathrm{Q}_{5}=503.08 \mathrm{kN}$
Step 5: Determination of Eigen value and Eigen vector:-
Calculation of stiffness of all columns:
$\mathrm{K}=12 \mathrm{EI} / \mathrm{L}^{3} \quad=K=\left\{12 \times 5000 \times \sqrt{30} \times 1000 \times\left(0.30 \times .55^{3} \div 12\right)\right\} \div 3.35^{3}=36358.46 \mathrm{kN} / \mathrm{m}$
Total lateral stiffness of each storey
$\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}=\mathrm{K}_{4}=\mathrm{K}_{5}=66 \times 36358.46=2399659 \mathrm{KN} / \mathrm{m}$ (66 no. of columns on each storey)
put $\mathrm{K}=2399658.66 \quad \mathrm{M}=791.38 \quad \mathrm{M}_{0}=531.62$

$$
K-\omega^{2} M=\left(\begin{array}{ccccc}
2 K-\omega^{2} M & -K_{2} & 0 & 0 & 0 \\
-K_{2} & 2 K-\omega^{2} M & -K_{3} & 0 & 0 \\
0 & -K_{3} & 2 K-\omega^{2} M & -K_{4} & 0 \\
0 & 0 & -K_{4} & 2 K-\omega^{2} M & -K_{5} \\
0 & 0 & 0 & -K_{5} & K-\omega^{2} 0.5 M_{0}
\end{array}\right)
$$

Step6: MATLAB

$\mathrm{K}=[4799371$-2399659 000 0;-2399659 4799371 -2399659 0 0; 0-2399659 4799371-2399659 0; 00 0-2399659
4799371-2399659;0 0 0-2399659 2399659];

$$
\mathrm{M}=[791.3770000 ; 0791.377000 ; 00791.37700 ; 000791.3770 ; 0000 \text { 531.615] }
$$

$\mathrm{x}=\mathrm{zeros}(5,5)$;
\%function[w]=naturalfreq(k,m);
syms omega;
$\mathrm{a}=\mathrm{k}$-(omega $\times \mathrm{m}$);
b=det(a)
c=sym2poly(b)
d=roots(c)
W=sqrt(d)
Eigen value of full structure
$\omega^{2}{ }_{1}=278$
$\omega^{2}{ }_{2}=2339$
$\omega^{2}{ }_{3}=5686$
$\omega^{2}{ }_{4}=9084$
$\omega^{2}{ }_{5}=11386$

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

Table 2: Eigen vectors of full structure $\{\varphi\}:\{\varphi\}=\{\varphi 1 \varphi 2 \varphi 3 \varphi 4 \varphi 5\}$

storey	$\boldsymbol{\varphi}_{\mathbf{1}}$	$\boldsymbol{\varphi}_{\mathbf{2}}$	$\boldsymbol{\varphi}_{\mathbf{3}}$	$\boldsymbol{\varphi}_{\mathbf{4}}$	$\boldsymbol{\varphi}_{\mathbf{5}}$
$\mathbf{1}$	0.006611	0.017383	0.021809	0.01858	0.009844
$\mathbf{2}$	0.012615	0.021357	0.002722	-0.0185	-0.01728
$\mathbf{3}$	0.017463	0.008857	-0.02147	-0.00016	0.020474
$\mathbf{4}$	0.020711	-0.01048	-0.0054	0.018657	-0.01866
$\mathbf{5}$	0.022059	-0.02173	0.020795	-0.01842	0.012266

Natural time period of full structure From Stiffness Matrix method, $T=2 \pi / \omega$ for column size (300×550) is in table 9 .
Table $7 \&$ table 8 shows the lateral displacement and drift of the structure.
B. ETAB Analysis (Same Full Structure In ETAB) :

As shown above the results in table 1, table 2, obtained from method 1 which is done in spread sheet of a 5 storeys bare frame model of column dimension $300 \times 550 \mathrm{~mm}$ for calculation of seismic analysis.

In next step the same parameters and preliminary data 1 is taken and analyzed in software named ETAB for validation of results which are shown in table $3 \&$ table 9.

Table 3: Mode shapes from ETAB full structure analysis: $(\mathbf{3 0 0} \times \mathbf{5 5 0}) \mathbf{m m}$

storey	$\boldsymbol{\varphi}_{\mathbf{1}}$	$\boldsymbol{\varphi}_{\mathbf{2}}$	$\boldsymbol{\varphi}_{\mathbf{3}}$	$\boldsymbol{\varphi}_{\mathbf{4}}$	$\boldsymbol{\varphi}_{\mathbf{5}}$
$\mathbf{1}$	-0.0034	0.0101	0.0157	-0.0178	-0.0127
$\mathbf{2}$	-0.0084	0.0177	0.0101	0.0088	0.0166
$\mathbf{3}$	-0.013	0.0122	-0.0134	0.009	-0.0162
$\mathbf{4}$	-0.0163	-0.0029	-0.0119	-0.0171	0.0112
$\mathbf{5}$	-0.0183	-0.0167	0.0131	0.0085	-0.004

Fig 3. Maximum storey displacement and drift (300x550) mm in ETAB Full Structure analysis

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

C. Methodology 2 (Lumped Structure In Spread Sheet) :

The first method which is carried by using IS code $18932002{ }^{[1]}$ parameter for equivalent static analysis and dynamic analysis (Response spectrum method) in both Spreadsheet as well as in ETAB software.

In next method the assumption is made as by considering a lumped mass model method in which all 66 number of column stiffness is considered as single value K and all mass on floor is considered as M as shown in figure 4.1

For easy modulation in ETAB software, lumped mass model is calculated as
Calculation of stiffness of all columns:
$\mathrm{K}=12 \mathrm{E} \mathrm{I/} \mathrm{~L}{ }^{3} \quad K=\left\{12 \times 5000 \times \sqrt{30} \times 1000 \times\left(0.3 \times 0.55^{3} \div 12\right)\right\} \div 3.35^{3}=36358.46 \mathrm{kN} / \mathrm{m}$
Total lateral stiffness of each Storey
$\mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3=\mathrm{k} 4=\mathrm{k} 5=66 \times 36358.46=2399658.66 \mathrm{KN} / \mathrm{m} \quad$ (66 columns)
find $b \& d \quad K=12 E I / L^{3}$
$\mathrm{I}=\quad\left\{\left(2399658.66 \times 3.35^{3}\right) \div(12 \times 5000 \times \sqrt{30} \times 1000)\right\}$
$=0.27451875 \quad\left(\mathrm{I}=\mathrm{b} \times \mathrm{d}^{3} / 12\right)$
$\mathrm{b}=1.347219359 \mathrm{~m} \quad \mathrm{~b}=\mathrm{d}$
$\mathrm{b}=1347.219359 \mathrm{~mm} \quad(\mathrm{~b}$ of full structure)
$\mathrm{I}=\quad \mathrm{b} \times \mathrm{d}^{3} / 12=0.27451875$
$\mathrm{I}=\quad 0.27451875 / 4=0.068629688 \quad$ (for 4 columns)
$\mathrm{b}=(0.068629688 \times 12)^{\wedge(1 / 4)} \quad \mathrm{I}=\mathrm{b} \times \mathrm{d}^{3} / 12 \& \mathrm{~b}=\mathrm{d}$
$\mathrm{b}=0.952627944 \mathrm{~m}=952.63 \mathrm{~mm}$
$\mathrm{M}_{1} \quad$ = Calculation of Lumped on roof $=5215.143 \mathrm{kN}$
$\mathrm{M}_{2}, \mathrm{M}_{5}=\quad$ Calculation of Lumped on floor $=7763.41 \mathrm{kN}$
Consider 4 columns of 953 mm and slab $2 \times 2 \mathrm{~m}$ and beam size 250 mm
Thickness of $\mathrm{S}_{1}=$ Lumped mass - column wt - beam wt - slab wt $=$
Lumped mass $\mathrm{M}_{1}=\quad 5038.6375 \mathrm{kN} \quad \mathrm{t} \mathrm{S}, 50.3863 \mathrm{~m}$
Lumped mass $\mathrm{M}_{2}, \mathrm{M}_{5} \quad=\quad 7586.9062 \mathrm{kN} \quad \mathrm{t} \mathrm{S}_{2}=75.8690 \mathrm{~m}$

Preliminary data 2 (for lumped structure analysis):

Type of Structure : Multi Storey rigid jointed frame
Zone: 400.2
(table 2 - IS1893)
No. of Storey :
Five Storey $(\mathrm{G}+4)$
Floor Height : 3.35 m

Spacing in X dir :2 m
Spacing in Y dir :2
Wall Thickness : 150 mm
Live Load on Roof : $1.5 \quad \mathrm{kN} / \mathrm{m}^{2}$; Live Load on Floors: $3.5 \quad \mathrm{kN} / \mathrm{m}^{2}$
Materials : Concrete - M30; Steel - Fe415
Seismic analysis :Equivalent static method IS 1893 (part 1) : 2002
Design philosophy : Limit state method IS 456 : 2000[4]
Ductility design : IS 13920: 1993

Size of Column : 953×953		mm	$\mathrm{L}=$	0.952628 m	628 m	
Size of Beams : 2	250×250		mm	$1=0.25$	m de	$\mathrm{de}=0.25$
Total Depth of Slab : 1	120	mm	(approximation made for lumped structure as shown above)			
Density of Concrete: 2	25	kN/m	Density of Bricks : $20 \mathrm{kN} / \mathrm{m}$			
Total width of building $=\mathrm{d}^{\prime}=$		2	m			
Total height of building $=\mathrm{h}^{\prime}=$		16.75	m			
Total length of building $=\mathrm{l}^{\prime}=$		2	m			
No. of Walls in Trans Dir =		2	;	No. of Walls	Long Dir $=$	$=2$
No. of bay in x dir $=$		1	;	No. of bay in	r $=$	1
No. of Columns =		4	(at ea	Floor)		

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

Procedure is same as above done for full structure analysis in method 1:

The above data is then entered in Spreadsheet and analysis is done using same parameters as discussed in method 1 for full structure analysis,

From above process we get base shear, lateral load, fundamental natural time period and frequencies and as shown in table 6 and table 7 below

Vertical distribution of base shear:
$\mathrm{Q}_{1}=30.988 \mathrm{kN}$
$\mathrm{Q}_{2}=123.954 \mathrm{kN}$
$\mathrm{Q}_{3}=278.896 \mathrm{kN}$
$\mathrm{Q}_{4}=\quad 495.816 \mathrm{kN}$
$\mathrm{Q}_{5}=\quad 508.344 \mathrm{kN}$
Eigen value $=\quad \omega^{2}{ }_{1}$

$$
\begin{array}{ll}
\omega^{2}{ }_{1}= & 271 \\
\omega^{2}{ }_{2}= & 2228 \\
\omega^{2}{ }_{3}= & 5554 \\
\omega^{2}{ }_{4}= & 8864 \\
\omega^{2}{ }_{5}= & 11083
\end{array}
$$

Fig.6: Loading Diagram for Lumped structure

Table 4: Eigen vectors $\{\varphi\}:\{\varphi\}=\left\{\varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4} \varphi_{5}\right\}($ lumped structure of $300 \times 550) \mathrm{mm}$

storey	$\boldsymbol{\varphi}_{\mathbf{1}}$	$\boldsymbol{\varphi}_{\mathbf{2}}$	$\boldsymbol{\varphi}_{\mathbf{3}}$	$\boldsymbol{\varphi}_{\mathbf{4}}$	$\boldsymbol{\varphi}_{\mathbf{5}}$
$\mathbf{1}$	0.006541	0.0172	0.021546	0.018266	0.009543
$\mathbf{2}$	0.01248	0.021059	0.002471	-0.01843	-0.01682
$\mathbf{3}$	0.017271	0.008584	-0.02126	0.000325	0.020088
$\mathbf{4}$	0.020474	-0.01055	-0.00491	0.0181	-0.01858
$\mathbf{5}$	0.021793	-0.0215	0.020699	-0.01859	0.012654

D. Methodology 3 (Lumped structure analysis in ETAB):

The next procedure which is introduced in this paper is the lumped mass model to be done in ETAB software, in method 2 which is discussed earlier and analyzed in spread sheet where a single bay frame of $(2 \times 2) \mathrm{m}$ of 4 column structure of dimension from preliminary data2 is entered in ETAB software.

Instead of seismic loads and parameters used for spread sheet lumped, in ETAB model the lateral loads of equivalent static analysis are applied in the transverse direction as shown in figure 5 above $\&$ in table 5 and rest all dimensions are entered as same preliminary data 2.

Table 5: Distribution of Lateral load at each storey in Transverse direction

Storey	\mathbf{W}	\mathbf{h}	$\mathbf{W} \times \mathbf{h}^{\mathbf{2}}$	$\mathbf{W} \times \mathbf{h}^{\mathbf{2} / \mathbf{\Sigma} \mathbf{W} \times \mathbf{h}^{\mathbf{2}}}$	$\mathbf{Q}(\mathbf{k N})$	$\mathbf{Q / 2}$ (Applied lateral loads)kN
$\mathbf{5}$	8139.794	16.75	2283721	0.395155	1177.652	588.83
$\mathbf{4}$	10382.68	13.4	1864314	0.322584	961.375	480.69
$\mathbf{3}$	10382.68	10.05	1048677	0.181454	540.773	270.39
$\mathbf{2}$	10382.68	6.7	466078.6	0.080646	240.343	120.17
$\mathbf{1}$	10382.68	3.35	116519.6	0.020162	60.086	30.04

The results which are found from ETAB lumped structure is shown in table 6 , table 7 , table $8 \&$ table 9 .

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

Table 6: Mode shapes: (lumped structure in ETAB) Transverse direction

storey	$\boldsymbol{\varphi} \mathbf{1}$	$\boldsymbol{\varphi 2}$	$\boldsymbol{\varphi} \mathbf{3}$	$\boldsymbol{\varphi 4}$	$\boldsymbol{\varphi 5}$
$\mathbf{1}$	-0.0027	-0.0138	0.0222	0.0203	-0.0115
$\mathbf{2}$	-0.0078	-0.0217	0.01	-0.0158	0.0184
$\mathbf{3}$	-0.0142	-0.0162	-0.0167	-0.007	-0.0206
$\mathbf{4}$	-0.0213	0.0014	-0.0116	0.0202	0.0153
$\mathbf{5}$	-0.0282	0.0219	0.0187	-0.0141	-0.0078

IV. RESULTS AND DISCUSIONS

1. With the consideration of equivalent lumped mass model, whole geometry of building is considered as (1×1) bay simple frame. This reduced time consumption in modelling complex structures.
2. Stiffness of all columns at floor is considered as a stiffness of four columns at same floor. This approximation gives same lateral stiffness against lateral loads.
3. Regression equation is developed for calculating time period for (1×1) bay simple frame, as well as the full model. These equations give exact time period as that of analyzed full scale model on ETAB as well as on spread sheet.
4. The method gives acceptable results as compared with the exact result on ETAB.
5. This approximate method can be used for any no of storey structures for quick decisions.

V. TABLES AND GRAPHS

Table 7: Lateral Displacement of 5 storey model from ETAB full and ETAB lumped in transverse direction of $(\mathbf{3 0 0} \times 550) \&(550 \times 300) \mathbf{~ m m}$ (figure 6)

Column size	$\mathbf{3 0 0} \times \mathbf{5 5 0}$			$\mathbf{5 5 0 \times 3 0 0}$		
Storey	Displacement			Displacement		
	ETAB full	ETAB lumped	\% Error	ETAB full	ETAB lumped	\% Error
$\mathbf{5}$	0.01357	0.0136	0.187	0.0288	0.0289	0.247
$\mathbf{4}$	0.01096	0.0109	-0.603	0.0241	0.0239	-0.778
$\mathbf{3}$	0.00800	0.0081	1.126	0.0183	0.0185	1.200
$\mathbf{2}$	0.00526	0.0052	-1.332	0.0128	0.0126	-1.347
$\mathbf{1}$	0.00225	0.0023	1.805	0.0060	0.0061	1.307
$\mathbf{0}$	0	0		0	0	

Table 8: Drift of 5 storey model of ETAB full and ETAB lumped in transverse direction (300 $\times 550$) \& (550×300) mm (figure 8)

Column size	$300 \times \mathbf{5 5 0}$			$\mathbf{5 5 0 \times 3 0 0}$		
Storey	Drift			Drift		
	ETAB full	ETAB lumped	\% Error	ETAB full	ETAB lumped	\% Error
$\mathbf{5}$	0.00087	0.00081	-8.359	0.00151	0.00151	0.177
$\mathbf{4}$	0.00124	0.00083	-49.90	0.00183	0.00161	-14.337
$\mathbf{3}$	0.00184	0.00086	-114.9	0.00218	0.00176	-24.328
$\mathbf{2}$	0.00191	0.00085	-123.9	0.00246	0.00192	-27.701
$\mathbf{1}$	0.00089	0.00069	-29.38	0.00187	0.00183	-2.491
$\mathbf{0}$	0	0		0	0	

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

Figure 7: Displacement of 5 storey's model $(300 \times 550) \mathrm{mm}$ and (550×300)

Figure 8: Drift of 5 storey's model $(300 \times 550) \mathrm{mm}$ and $(550 \times 300) \mathrm{mm}$

Table 9: Natural time period of 5 storey's $\mathbf{3 0 0} \times \mathbf{5 5 0} \mathbf{~ m m}$ in Transverse direction

Storey	Spread sheet full	ETAB full	Spread sheet lumped	ETAB lumped
$\mathbf{5}$	0.8599	0.86	0.8996	0.90
$\mathbf{4}$	0.2701	0.27	0.2200	0.22
$\mathbf{3}$	0.1468	0.15	0.1097	0.11
$\mathbf{2}$	0.1065	0.1	0.0810	0.08
$\mathbf{1}$	0.0764	0.08	0.0692	0.07
$\mathbf{0}$	0	0	0	0

Table 10: Natural time period of 5 storey's $550 \times 300 \mathrm{~mm}$ in Transverse direction

Figure 9: Time period of 5 storey's model
$(300 \times 550) \mathrm{mm}$ in transverse dir

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 4, Issue 2, pp: (12-21), Month: October 2016 - March 2017, Available at: www.researchpublish.com

VI. CONCLUSIONS

1. This kind of assumption is applicable for balanced and symmetric structure.
2. From above result we concluded that the time period of spreadsheet is same for ETAB software for same model.
3. Lateral displacement is also same for ETAB full and ETAB lumped model.

REFERENCES

[1] IS 1893 (Part I): (2002), Criteria for Earthquake Resistant Design of Structures, Part I General Provisions and Buildings, Bureau of Indian Standards, New Delhi.
[2] IS 13920 (1993) Ductile detailing of RC structure subjected to seismic forces, Bureau of Indian Standards, New Delhi.
[3] ATC (Applied Technology Council) (1996). Seismic Evaluation and Retrofit of Concrete Buildings. ATC (Report No. ATC-40), Redwood City, California.
[4] IS 456, (2000), Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
[5] Agarwal, P., Shrikhande, M., (2007), "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. New Delhi.
[6] Paulay, T., Priestley, M. J. N., "Seismic Design of Reinforced Concrete and Masonry Buildings", A Wiley Interscience Publication, U S A.
[7] ETABS v9.5, Extended Three Dimensional Analysis of Building Systems, Users Manual, Computers and Structures, Berkeley, CA, USA
[8] IS: 4326-2005: 1993- Indian standard-"Indian Standard Code of Practice for Earthquake Resistant Design and Construction of Building Second Revision", Bureau of Indian Standards, New Delhi.
[9] Chopra A. K, Dynamics of structures theory and applications to earthquake engineering, Prentice- Hall, Englewood Cliffs, N.J. 1995.
[10] Ch. Raviteja, V.Ramesh, Dr. B. Panduranga rao (IJEAR Vol. 4, Issue Spl-2, Jan - June 2014) "Natural Frequencies and Mode shapes of 20 Storey Building Using MATLAB" (Dept. of Civil, VR Siddhartha College of Engineering, Vijayawada, AP, India)
[11] R, Shahrin and T.R. Hossain, Seismic Performance Evaluation Of Residential Buildings in Dhaka City by using Pushover Analysis, 4th Annual Paper Meet and 1st Civil Engg. Congress, 2011.

